
Research Article

The voluntary driven exoskeleton Hybrid
Assistive Limb (HAL) for postoperative training
of thoracic ossification of the posterior
longitudinal ligament: a case report
Kengo Fujii1 , Tetsuya Abe1, Shigeki Kubota1, Aiki Marushima2,3, Hiroaki
Kawamoto4,5, Tomoyuki Ueno6, Akira Matsushita2,5, Kei Nakai2, Kosaku
Saotome5, Hideki Kadone3, Ayumu Endo6, Ayumu Haginoya6, Yasushi Hada6,
Akira Matsumura2, Yoshiyuki Sankai4,5, Masashi Yamazaki1,3

1Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan,
2Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan, 3Center for
Innovating Medicine and Engineering, University of Tsukuba, Tsukuba City, Japan, 4Information and Systems,
Faculty of Engineering, University of Tsukuba, Tsukuba City, Japan, 5Cybernic Research Center, University of
Tsukuba, Tsukuba City, Japan, 6Department of Rehabilitation, University of Tsukuba, Tsukuba City, Japan

Context: The hybrid assistive limb (HAL) is a wearable robot suit that assists in voluntary control of knee and hip
joint motion by detecting bioelectric signals on the surface of the skin with high sensitivity. HAL has been
reported to be effective for functional recovery in motor impairments. However, few reports have revealed the
utility of HAL for patients who have undergone surgery for thoracic ossification of the posterior longitudinal
ligament (thoracic OPLL). Herein, we present a postoperative thoracic OPLL patient who showed remarkable
functional recovery after training with HAL.
Findings: A 63-year-old woman, who could not walk due to muscle weakness before surgery, underwent
posterior decompression and fusion. Paralysis was re-aggravated after the initial postoperative rising. We
diagnosed that paralysis was due to residual compression from the anterior lesion and microinstability after
posterior fixation, and prescribed bed rest for a further 3 weeks. The incomplete paralysis gradually
recovered, and walking training with HAL was started on postoperative day 44 in addition to standard
physical therapy. The patient underwent 10 sessions of HAL training until discharge on postoperative day 73.
Results of a 10-m walk test were assessed after every session, and the patient’s speed and cadence
markedly improved. At discharge, the patient could walk with 2 crutches and no assistance. Furthermore, no
adverse events associated with HAL training occurred.
Conclusion: HAL training for postoperative thoracic OPLL patients may enhance improvement in walking ability,
even if severe impairment of ambulation and muscle weakness exist preoperatively.
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Introduction
The hybrid assistive limb (HAL) is a wearable robot suit
that assists in voluntary control of knee and hip joint
motion (Fig. 1). Signals from force-pressure sensors in
the shoes and muscle action potentials detected through
electrodes on the surface of the skin are processed

through a computer and assisted motions are provided
to the patient. Power units on the hip and knee joints
on both sides consist of angular sensors and actuators,
and the control system consists of a cybernic voluntary
control and a cybernic autonomous control subsystem.1

HAL has been reported to be useful in the functional
recovery of various mobility disorders.2–5 Studies have
shown successful outcomes for mobility disorders in
the chronic phase or maintenance phase, but there are
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few reports on the use of HAL in the acute phase or
early postoperative period.6,7 Therefore, the efficacy of
HAL in the acute phase or early postoperative period
remains unclear.

In the current case report, HAL training was per-
formed in addition to standard physical therapy, and
physical function and walking ability were evaluated
before and after HAL training. We report the feasibility,
safety and the recovery course of HAL training in the
acute phase after surgery for thoracic ossification of
the posterior longitudinal ligament (thoracic OPLL).
To the best of our knowledge, only one case report has
reported on the use of HAL in patients who have under-
gone surgery for thoracic OPLL.7 Sakakima et al.
reported on the feasibility of early HAL training after
surgery and its ability to enhance motor recovery of
patients with residual paralysis after surgery. Patients
with thoracic OPLL commonly present with myelopa-
thy and muscle weakness of the proximal leg muscles,
which leads to severe gait impairment.

Herein, we present a postoperative thoracic OPLL
patient who showed remarkable functional recovery
after training using HAL, although the paralysis was
re-aggravated after the initial postoperative rising,
requiring 3 weeks of bed rest.

Case presentation
A 63-year-old woman became aware of sensory abnormal-
ity in both legs 2 months before surgery. One month before
the surgery, her gait disturbance became pronounced and
she required a walking stick. Two weeks before the
surgery, paralysis and strong numbness in both legs

suddenly appeared and she was unable to walk. She was
taken by ambulance to a local hospital, and incomplete
paraplegia caused by thoracic OPLL was diagnosed. She
was subsequently moved to our institute for surgery.

The neurologic examination on admission revealed
muscle weakness with a manual muscle testing (MMT)
score of 3/2 in the iliopsoas muscle and an MMT
score of 4/4 in the quadriceps femoris, tibialis anterior,
gastrocnemius, and hamstring muscles. The patient had
severe sensory disturbance (touch, pain, temperature,
and position) and severe numbness in both the legs in
the portion below the inguinal region. There was no
urinary bladder or bowel function disturbance. The
results of the blood and urine tests were normal.

Computed tomography after myelography showed
OPLL extending from T3 to T7, discontinuous ossifica-
tion at T4/5, and vertebral fracture of T5 without pos-
terior wall damage (Fig. 2). Magnetic resonance
imaging showed strong anterior spinal cord compression
at the T4/5 level, and the caudal portion of the T5 ver-
tebral body showed low intensity on both T1- and T2-
weighted images (Fig. 3). The estimated amount of
intraspinal canal ossification was 70%.

Preoperative clinical evaluation showed that the
Japanese Orthopaedic Association (JOA) score, exclud-
ing the upper extremities, was 5.5/11 (0-1, 5-1-3); the
spinal cord independence measure score (SCIM-
score)8 was 57 points (self-care: 6/20 points; respiration
and sphincter management: 37/40 points; and mobility:
14/40 points); the American Spinal Injury Association
(ASIA) impairment scale (AIS) was grade D; the
ASIA motor score (lower limb total) was 33 points
(right: 18 points; left: 15 points); the ASIA sensory
score for light touch was 86 points (right: 43 points;
left: 43 points); the Walking Index for Spinal Cord
Injury II (WISCI II)9–11 was 8 points; and the Frankel
classification was grade C.

We speculated that intense stress at the discontinuous
ossification caused the vertebral fracture and local
instability led to the compression of the spinal cord.

Posterior decompression and fusion (laminectomy for
T3 to T7, and pedicle screw fixation and posterolateral
fusion for T1 to T9) were performed (Fig. 4). The oper-
ation took 6 hours and 35 minutes, and the estimated
blood loss was 280 mL. Intraoperative ultrasonography
showed pulsation of the dural sac and favorable posterior
decompression; however, the anterior compression of the
OPLL remained. Intraoperative motor-evoked potential
monitoring showed no change in amplitude.

The extradural drainage catheter was removed on
postoperative day 2 and rehabilitation was started on
postoperative day 5. On postoperative day 7, weakness

Figure 1. Voluntarily driven exoskeleton hybrid assistive limb
(HAL). The HAL has power units on the hip and knee joints on
both sides; the power units consist of angular sensors. In
addition, HAL has force-pressure sensors in the shoes.
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in both the legs suddenly occurred while the patient was
undergoing parallel-bar walking training. A neurologic
examination revealed muscle weakness with an MMT
score of 0-1/0-1 in the iliopsoas, quadriceps femoris,
tibialis anterior, gastrocnemius, and hamstring
muscles. The sensory disturbance in both the legs also
worsened at the same time; however, numbness was
slight. Plain radiographs and computed tomography

scans showed appropriate laminectomy and pedicle
screw fixation, and magnetic resonance imaging
showed that the spinal canal was successfully decom-
pressed and that compressive lesions such as an epidural
hematoma were absent. We diagnosed the aggravation
of muscle weakness to be due to residual compression
from the anterior lesion and microinstability after the
posterior fixation and prescribed bed rest for a further
3 weeks. The incomplete paralysis gradually recovered
to an MMT score of 3/3, and after resuming rehabilita-
tion, the patient was able to stand and walk again using
the parallel bars.
Walking training with HAL started on postoperative

day 44 in addition to standard physical therapy.
Standard physical therapy was performed every
weekday for 40 minutes and consisted of sitting position
training and walking training using parallel bars with
the assistance of a physical therapist. At the initiation
of HAL training, the robot was fitted and sitting/stand-
ing motion was confirmed. A walking device (All-in-
One Walking Trainer; Healthcare Lifting Specialist,
Denmark) with a harness was used for safety, and
HAL training consisted of walking on a 28-meter-long
circuit several times with the assistance of 2 physical
therapists and a doctor. HAL training lasted 60
minutes, including rests and time for attaching/detach-
ing the device, and was performed 2 or 3 times a
week. The patient underwent 10 sessions of HAL train-
ing until being discharged on postoperative day 73. The
results of the 10-m walk test9 are shown in Table 1. The
patient’s speed and cadence markedly improved.
Clinical evaluation was performed again after the final
training session: the JOA score (excluding the upper
extremities) was 6.5/11 (1-1, 5-1-3); the SCIM-score
improved to 84 points (self-care: 20/20 points; respir-
ation and sphincter management: 39/40 points; and
mobility: 25/40 points); the AIS was still grade D; the
ASIA motor score improved to 38 points (right: 19
points; left: 19 points); the ASIA sensory score for
light touch improved to 86 points (right: 43 points;
left: 43 points); the WISCI II score increased to 16
points; and Frankel classification was grade D
(Table 2). At discharge, the patient could walk with 2
crutches and no assistance. No adverse events associated
with HAL training occurred.

Discussion
Recently, the feasibility of HAL training for various
motility disorders associated with stroke and chronic
spinal cord injury has been reported.2–5 The findings in
the current study suggest that HAL training may be useful
in the postoperative period of a thoracic OPLL surgery.

Figure 2. A Sagittal slice, computed tomography (CT) scan of
the thoracic spine. Ossification of longitudinal ligament (OPLL)
is observed in T3 to T8 level. B Axial slice, CT scan of the
thoracic spine showing OPLL.
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Sakakima et al. reported the only other case of HAL
training for a postoperative thoracic OPLL patient
also with good results.7 Compared with that case,
HAL training was introduced 2 weeks earlier in the
patient reported herein. In addition, the WISCI II
score before the operation and after the final training
was 8 to 16 in the current case and 0 to 8 in the pre-
vious case. In brief, the case reported in Sakakima
et al. showed a more severe gait disturbance. In con-
trast, our case experienced postoperative aggravation
of paraplegia and extra bed rest for 3 weeks. Taken
together, these two cases consistently show the safety
and feasibility of HAL training in the early postopera-
tive period for thoracic OPLL.

Three possibilities may underlie the improvement in
walking ability for postoperative thoracic OPLL
patients with HAL training. First, patients practice

walking using voluntary intensions assisted by HAL,
which might induce a feedback effect between the
central and peripheral nervous systems.12–14 Barbeau
et al. has mentioned the importance of sensory inputs
in locomotor training with animal and human studies
demonstrating that sensory inputs such as maximum
weight facilitates proper trunk posture and are essential
to maximizing functional recovery.15–17 Belda-Lois et al.
have reviewed the “top-down approach” in gait rehabi-
litation after stroke in which rehabilitation is driven by
neural plasticity.18 In addition, motor learning is an
important concept in robotic neurorehabilitation.19

With HAL training, assisted motion from the patient’s
voluntary drive can form the proprioceptive feedback
loop; thus, repetitive voluntary training may induce
motor learning.2 Plautz et al. revealed in their animal
experiments that motor learning is a prerequisite

Figure 3. A Sagittal slice, T1-weighted magnetic resonance imaging (MRI) scan showed vertebral body fracture in T5. B Sagittal
slice, T2-weighted MRI scan showed severe compression of spinal cord by OPLL.

Table 1 The results of a 10-m walk test at initial training and final training

10-m walk test

Speed (m/min) Cadence (steps/min) Stride (m/step)

At initial training 15.94 43.82 0.22
At final training 31.78 77.86 0.24
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factor in driving representational plasticity and that
repetitive motor activity alone does not produce func-
tional recovery.20 This result also supports our hypoth-
esis that assisted voluntary motion with HAL may
induce feedback and motor learning, and subsequent
functional recovery. Motor learning through neuro-
feedback has traditionally used electroencephalogra-
phy.21 Recently, real-time functional magnetic reson-
ance imaging (rt-fMRI) has been demonstrated to
allow for high spatial resolution and imaging of activity
across the entire brain within a short time, all done non-

invasively.22,23 Yang-ten Fang et al. have reported that
neuroplastic changes and functional recovery induced
by robot-assisted therapy in post-acute stroke patients
as well as fMRI findings of the brain were related to
functional recovery.24 Therefore, we believe that rt-
fMRI may give useful information regarding the mech-
anism of functional recovery associated with HAL train-
ing in the near future. Secondly, similar to other robotic-
assisted locomotor training, HAL and the All-in-One
Walking Trainer supports standing steadiness and
reduces the amount of labor required of the assistant,

Figure 4. A AP view, plain radiograph of the thoracic spine, immediately after surgery. Posterior decompression and fusion
(laminectomy for T3 to T7 and pedicle screw fixation and posterolateral fusion for T1 toT9) were performed. B Lateral view, plain
radiograph of the thoracic spine, immediately after surgery.

Table 2 The results of the cervical JOA score excluding upper extremity, ASIA classification, ASIA motor score (lower extremity),
ASIA sensory score (lower extremity), SCIM-score, WISCI II score, and Frankel classification at pre-op and at discharge

Cervical JOA score
excluding upper

extremity
ASIA

classification
ASIA motor score
(lower extremity)

ASIA sensory score
(lower extremity)

SCIM-
score

WISCI
II

Frankel
classification

Pre-op 5.5/11 D 18/15 43/43 57 8 C
At discharge 6.5.11 D 19/19 43/43 84 16 D
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especially in patients with muscle weakness in the prox-
imal muscles of the legs.25 Furthermore, voluntary
movement may be difficult for a patient with a parapar-
esis due to spinal diseases such as OPLL in the acute
phase. However, HAL enables one to practice walking
in the acute phase of motor function disorder using
the wearer’s intension. Thus, HAL enables more repea-
table, precise, sustainable, and progressive training.
Thirdly, training using an advanced robotic device
may affect the patient’s motivation for rehabilitation.
We routinely collect questionnaires including questions
on expectation, tiredness, actual feeling of effect, and
free comments. Further experience and analysis of
such data may reveal the psychological effect of HAL
training.

A limitation of the current study is that the remark-
able recovery of physical function may have been
achieved not only through HAL training but also
through the patient’s natural postoperative course after
decompression as well as through standard physical
therapy. Thus, we cannot definitively show the beneficial
effects of HAL in the current study. Case control and
randomized control studies may clarify the effect of
HAL training in the future. However, the previous
case report by Sakakima et al. and the current report
have shown the safety and feasibility of HAL training
for patients in the early post-operative period of thoracic
OPLL.

The mechanism by which HAL affects the central and
nervous system is unclear; however, there have been
some reports showing possible favorable change and
plasticity of the central nervous system via sensory feed-
back.12–21,24 We believe that the best advantage of HAL
over normal physical rehabilitation is the extremely syn-
chronized enhancement of voluntary command from
the brain to the muscles. HAL enables patients to volun-
tarily move their legs, even patients with severe muscle
weakness; thus, we expect this movement may induce
favorable sensory feedback to the central nervous
system. Nevertheless, combined evaluation by radiologi-
cal and neurophysiological assessment over time is
necessary to reveal the mechanism of change, and clini-
cal research should be performed including these assess-
ments. Further experience with early HAL training for
postoperative patients is needed.

Conclusion
HAL training for postoperative thoracic OPLL patients
may enhance improvement in walking ability, even if
severe impairment of ambulation and muscle weakness
exist preoperatively. Early commencement of HAL
training appears to be effective.
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